# INVESTIGATION OF THE THEORY ${ }^{\text {OF }}$ <br> ISOSTASY IN INDIA 

BY

MAJOR H．L．CROSTHWAIT，R．E．，

DY，SUPERINTENDENT，SURVEY OF INDIA，

PUBLISHED BY ORDER OF THE GOVERNMENT OF INDIA．


PRINTED AT THE OFFIOE OF THE TRIGONOMETRIUAL SURVRY OF INDIA
1912.

India． $\mathfrak{F}$ uxbey of 道ndiadat．
PROFESSIONAL PAPER－No． 13.

# Investigation of THE THEORY OF ISOSTASY IN INDIA 

 BYMAJOR H．L．CROSTHWAIT，R．E．， DY．SUPERINTENDENT，SURYEY OF INDIA，

PUBLISHED BY ORDER OF THE GOVERNMENT OF INDIA．


$$
\text { 理 } \mathfrak{c y r a} \text { 四un: }
$$

## CONTENTS.



## PREFACE.

No originality is claimed for this work. It is merely an attempt to apply Mr. Hayford's method to India. In this paper his words are often used, though sometimes not shown in italics.

In carrying out this long, and somewhat monotonous undertaking, I have had the willing assistance of Mr. Waller-Senior, Survey of India.
$\left.\begin{array}{c}\text { Simla: } \\ \text { April 1912. }\end{array}\right\}$
H. L. C.

# Investigation of the Theory 

of

Isostasy in India

by

Major H. L. Crosthwait, R.E.,

Dy. Superintendent, Survey of India.

## Explanation of Methods.

1. The object of this investigation was to ascertain, whether, making certain necessary assumptions, the condition called isostasy* exists in India.
2. I'he method followed was that adopted in a similar investigation carried out for the United States of America by Mr. John IF. Hayford, of the United States Coast and Geodetic Survey.

Mr. Harford has displayed considerable ingenuity in adapting the formula so as to reduce the labour of computation to a minimum. Without some such device the time and labour involved would make the work practically impossible.
3. The data already available, for India, consisted of the geodetic and astronomical latitudes of the stations under investigation ; from which the quantity ( $A-G$ ), or the astronomical minus the geodetic latitude for each station has been derived. ( $A-G$ ) is the angle at the station between the direction of gravity and the normal to Everest's spheroid which has been adopted for India; it has also been applied to the Bessel-Clarke spheroid as explained on page 3 para. 14 and footnote page 4.

This quantity has a phis sign where the zenith of the station, as defined by a line normal to the adopted spheroid, is north of the zeuith defined by a line normal to Everest's or Bessel-Clarke spheroid, and mimas when the zenith is to the south.
4. The following is a short accomnt of the method $\dagger$ adopted in conputing the orographical deffection at stations. By orographical or topographical deflection is neant the theoretical deflection which should be produced by an irregular distribution of masses, if such distribution were to follow the irregularities of topography. The formula used is that due to Colonel A. R. Clarke, R.E., F.R.S., given in his work on Geodesy.

$$
D=12^{\prime \prime} \cdot 4+\frac{\delta}{\Delta} h\left(\sin a^{1}-\sin a_{1}\right) \log _{\mathrm{e}} \frac{r^{\prime}}{r_{1}}
$$

[^0]$D$ is the deflection produced at the station by a mass of surface material of the earth, which is a stratum $h$ miles thick, embraced by a four-sided compartment limited by two radial lines from the station, and by arcs of two circles with the station as a common centre, the circles having radii of $r^{1}$ and $r_{1} ; a^{1}$ and $a_{1}$ are the angles between the radial lines and the meridian; $\delta$ the mean surface deusity of the earth, assumed to be $2 \cdot 67$; $\Delta$ the mean density of the whole earth taken as equal to $5 \cdot 376$.* The constant $12^{\prime \prime} \cdot+4$ depends on the supposition that the earth may be considered a sphere of 3960 miles radius.
5. "The whole of the attracting stratum is assumed to be in the horizon of the station". "If the stratum considered within any compartment be that which is limited below at sea-level " and above at the actual irregular surface of the eartl, then with considerable accuracy the "following statement based on the formula may be made :-Fur compartments bounded by circles "whose radii are in geometrical progression, the deflection produced at a station at the centre of " the circles in a direction parallel to the reference line, is for such compartment, proportional to "the mean elevation of the land surface within the compartment."
6. As exceptions to the above general statement the following cases require special treat. ment:
(a) Compartmeuts so far from the station that the curvature of the earth must be considered, a correction has been introduced to meet this, as will be shown later.
(b) Compartments of which some part lies far ahove or far below the mean elevation of the compartment.
(c) Compartments near the station the mean surfaces of which lie far above or below the station, to these a slope correction has to be applied for which tables are provided.
7. In order to make the computation as simple and rapid as possible the following values were adopted:
$$
\frac{1}{r_{1}}=1 \cdot 426, \sin a^{1}-\sin a=0 \cdot 2 \overline{0}
$$

Substituting these and ratio $\frac{2 \cdot 67}{5 \cdot 576}=\frac{1}{2 \cdot 09}$ for $\frac{\delta}{\Delta}$ in the formula given in para 4 aud expressing the height of the compartment above mean sea-level in feet instead of miles, we get

$$
D=12^{\prime \prime} \cdot 44\binom{1}{2 \cdot 09} \frac{h}{5280}(0 \cdot 25) \log _{\mathrm{e}} 1 \cdot 426=0^{\prime \prime} \cdot 0001(000(h \text { in feet })
$$

From this it followe that every hundred feet of stratum above mean sea-level, in any compartment, produces a deflection of $0^{\prime \prime} \cdot(01$ at the station.
8. Table I page 6 shows the riugs with the outer radii of each set of compartments. The outer radius of ring 23 was arbitrarily made equal to unity.
9. In the case of compartments which fall in the sea, the depth of the ocean in feet was multiplied by $0615+$ and the result treated as if it were a negative land elevation. For compartments which are partly ocean and partly land, the fraction of each was estimated aud treated accordingly, care being taken to apply the correct sign to each portion.

[^1]10. The outer radii of rings 1 to 6 , if computed in the same manner as the other rings, would be $2456,1722,1207,847 \cdot 1,594.0$ and 4166 miles, respectively. But for these rings it was necessary to introduce the correction for curvature mentioned in para 6(a) which gave the radii the greater value shown in T'able I page 6.
11. The next step in the process is the construction of the templates on which are drawn the compartments, on the scale of the maps used, according to the conditions outlined in the foregoing paras. For this purpose sheets of transparent celluloid about $20^{\prime \prime} \times 20^{\prime \prime}$ were used, each template comprising one quadrant only. Wheu applied to the map with its centre on the station, and compartment No. 1 with its northern edge alony the prime-vertical, it was possible to see the area indicated by the boundaries of the compartments, and from the contours, or heights, to estimate the average elevation.
12. Heights so read off were contered on forms, specimens of which are shown in Tables III and IV. Every hundred feet of height was entered in its proper place as $0 \cdot 01$ second. Thus a compartment having an average height of 800 feet figured as $0^{\prime \prime} \cdot 08$ in the form.
13. It will be noticed that each ring contains 16 compartments, 8 of which lie to the south and 8 to the north of the station. According to the convention used, in the northern compartments all elevations above sea-level produce negative and those below sea-level positive deflections, while the opposite is the case in the southern compartments. The deflections produced by all the compartments in each ring are summed algebraically and entered, with their proper sign, in the column headed Horizontal sum. The figures in this column are the deffections that the topography would produce if there were no isostatic compensation. Mr. Hayford shows that in order to convert these deflections into those produced by an isostatically compensated topugraphy, all that is necessary is to multiply the total for each zone, or ring, by a factor depeuding on its limiting radii and independent of its mean height.

These factors vary according to the depth at which it is supposed that isostatic compensation is complete. In this investigation the depth which Mr. Hayford found to be the most probable for the U.S. of America, namely 113.7 Km ., has been adopted. The meaning of this is that while the density of the crust varies according to surface irregularities above a depth of 1137 Km . below that depth density increases umformly and is independent of surface conditions. 'The factors for a depth of 113.7 Kilometres computed by Mr. Hayford (ride The Figure of the Earth and Isostasy, p. 70) are given in Table II page 7.

An example of their application in the case of Kalianpur is given in full, see Table III page 7.
14. The topographic deflections in the meridian were computed for 102 latiturle stations and in the prime vertical for 18 longitude stations.

On pages 9 to $1+$ will be found the results. The stations have been arranged according to regions in the same manner as they are grouped in the Great Trigonometrical Survey of India Vol. XVIII, Astronomical Observations for Latitude, pages (531) to (542).

In column 3 is shown the topographic deflection due to the visible surface masses. Column 4 shows the deflection, uniform isostatic compensation considered, the assumed depth being 113.7 Kilometres. Ihis is ohtamed by applying the factors given in Table II to the topographic deflection for each ring. The values of $(A-G)$ have been obtained by deducting the geodetic values of latitude from the astronomical values. For the values of $(A-G)$ in col. a the geodetic latitudes have been computed on the assumption that the direction of gravity at Kaliaupur is vertical, and they have been based on the olsolete spheroid of Everest (G.'I.S. Vol. XV1II). For the values of $(\Lambda-G)$ col. 6 the geodetic latitudes have been computed on the assumption, that
the direction of gravity is deflected $4^{\prime \prime}$ south at Kalianpur, and they have been based on the Bessel-Clarke spheroid* :- Equatorial radius $6,378,190$ metres, ellipticity $\frac{1}{299.15}$.

Column 7 shows the difference between column 6 and column 4 , that is the difference between the value of the actual and the computed deflection, or the unexplained residual.
'I'hese residuals, for each station, have been plotted on the accompanying chart
15. On page 14 are exhibited the results of treating longitude stations for deflection in the prime vertical. Column 4 is the topographic deflection obtained by turning the template throngh $90^{\circ}$ (see example, Table IV) as compared with the latitude position. Column 5 is the deflection, isostatic compensation considered. In columns 6 and 7 are given the values of (A-G) $\cos \lambda$ applied to the Everest spheroid and to the Bessel-Clarke spheroid, see para 14 and footnote. Column 8 is the difference between columns 7 and 5 and is the unexplained residual.

As regards signs, the convention used is that a westerly deflection has $+\operatorname{sign}$, while a sign means a deflection of the plumb-line to the east.

## Note on Residucts.

What are here called the residuals are the differences between the deflections computed on the hypothesis of uniform isostatic compensation an' the observed deflections $A-G$, applied to the Bessel-Clarke spheriod. They are given for each station in col. 7 of the tables of results. As in U. S. A., the stations of India have been divided into groups, or regions, following those (for India) given in Vol. XVIII.

With a view to comparing results obtained in the two countrics the following tables have been prepared showing the mean residual for each group, or region :-

| $U . S . A$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Group | S.E. | mean residual | $\ldots$ | $-0 \cdot 74$. |  |
| $"$ | N. E. | $"$ | $\ldots$ | $-1 \cdot 04$ |  |
| $"$ | Central | $"$ | $\ldots$ | $-1 \cdot 66$ |  |
| $"$ | $W$. |  | $"$ | $\ldots$ |  |

## Inedia

| Region No. | 1 | Himalaya Mountains | meau residual |  | - | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| " | 2 | Plains at the foot of Himalaya Monntains | s , |  | - | 2 |
| " | 3 | N. E. | " | .. | + | 8 |
| ,, | 4 | Central | " |  | + | 5 |
| ," | 5 | N. W. | ," |  | + | 4 |
| " | 7 | W. | , |  | - | 3 |
| " | 8 | E | " |  | - | 2 |
| " | 9 | S. | ", |  | $+$ | 1 |

Speaking geucrally it would appear that isostatic conditions are much more nearly realized in America than in India, ie., if we are to take the smallness of the residuals as an indication of the completeness of isostatic compensation. In India we have an example of a continent where very large natural convulsions have taken place, in recent geological times, producing upheavals

[^2]of the crust on a scale quite unknown in any other part of the globe. In U.S.A. disturbances bave been comparatively slight. Taking these facts into consideration, and granting that there is always a tendency towards isostatic equilibrium, is it not reasonable to suppose that while the attainment of equilibrium is already far advanced in America, in India it is still in an immature state, and compensation is by no means so perfect? The earth's crust in India is in a process of settling down and may be, comparatively speaking, in a state of strain.

It should be noted that the residuals are derived from quantities which result from a certain set of assumptious, namely the ratio of the densities at $1 / 2 \cdot 09$, and a depth of compensation of 113.7 kiloms.

The assumed density of $5 \cdot 576$ for the whole earth probably rests on a surer basis than 2.67 for the surface deusity, which is not easy to determine, and probably varies considerably.

It has been assumed that the distribution of density is uniform. Assuming the doctrine of isostasy to hold, is it not possible that in any two columns of matter extending from the surface down to the depth of compensation, there may be the same mass, and yet that the density may be very differently distributed in the two columas? These two columns, though in isostatic equilibrium, would act differently on the plumb-line owing to the unequal distribution of mass.

The draw-back to treating this subject by hard and fast mathematical formula is that we are introducing into a discussion of the constitution of the earth's crust a uniform method when, in reality, probably no uniformity exists. With these concluding remarks the results are here presented and left for future discussion.

## Note on maps en.ployed.

One-inch old standard Sheers.-These maps are generally speaking old and out of date. They are not contoured and some of them exhibit very few heights. Ther were used in some cases from ring 25 , or 0.49 mile, up to ring 15 , or $17 \cdot 1$ miles. In many instances the ground round the stations is so flat that the inner rings produce no deflection. Maps, on this scale, are not available for southern India.

Atlas sheets of India, scale 1 inch to four miles.-These are available for almost all stations. They were used from ring 15 to ring 11 , or to radius 707 miles. They are also mostly very old and not up to modern requirements. They are not contoured and some of the sheets have no heights on them at all. They, generally speaking, extend up to, and include, the first snowy rauge of the Himalaya. In dealing with Himalayan compartmeuts considerable difficulty was encountered. In many of them no heights whatever are shown. In these cases the estima. tion of compartment heights resolved itself, more or less, into guess work. In other compartments the heights which are given represent the tops of hills only. None are shown in the valleys. The absence of heights in the vallegs, the sides of which are generally very steep, makes it extremely difficult to estimate the average elevation, and probably produces a tendency to give too high a value thereto. Defective as these maps are they were the most reliable available for India generally. Had they been contoured it would have added greatly to their value for this, and other purposes.

Contoured maps of India on scales of 1 inch to 32 miles, and 1 inch to 64 miles.-These maps were used when the distance became too great for the Atlas Sheets. They are old and contours are approximate only.

Stanford's Orographical Map of Asia, scale 1 inch to $1.37 \cdot 6$ miles.-This map was used beyond the limits of India up to the extreme radius of 2564 miles. It includes countries where data are very meagre, such as Arabia and parts of Central Asia. The information regarding these regions must very often be in error. But the compartments in these outer rings are at a
considerable distance from the station, and when the factor for compensation (see table II) is applied to them a very considerable error can exist without producing any perceptible effect on the final result. At considerable distances from stations the projection of the map produces a displacement of the compartment in azimuth that conld not have been corrected without the expenditure of an amount of labour, which, owing to the smallness of the compensation factors, above referred to. it was not considered necessary to undertake. However, the data available are so uncertain as to make the introduction of a correction for projection of doubtful value.

Map on a scale of 1 inch to 192 miles.-On this map were plotted all oceanic depths which could be obtained from available marine charts. Depths in fathoms were converted into feet, and the map was contoured. From these the average depths of compartments were estimated, the results being treated as described in para 9 .

Speaking generally the maps available for this investigation were defective for the purpose for which they were required. Those which affect the results most are the one-inch and the quarter-inch maps, because the compartments falling in them, being nearest to the station, have the largest factors. As already noted these maps are not contoured, and in many cases heights are reficient.

TABLE I. RADII OE RINGS BOUNDING COMPARTMENTS.

| Ring | Outer radius |  | King | Outer radius |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | diles | Wilum+ires |  | 11iles | Kilometres |
| 1 | 2564 | 4126 | 20 | 2.899 | 4. GG: |
| 2 | 1757 | 2828 | 21 | 2.0.33 | $3 \cdot 272$ |
| 3 | 1219 | 1962 | 22 | 1.426 | 2-295 |
| 4 | $850 \cdot 8$ | 1369 | 23 | I-10000 | 1-609 |
| 5 | $505 \cdot 2$ | 957.9 | $\underline{\square} \cdot$ | -7013 | 1-129 |
| 6 | $416 \cdot 8$ | $670 \cdot 8$ | 25 | -4918 | -791.5 |
| 7 | $292 \cdot 9$ | 470'3 | 26 | -3449 | -5551 |
| 8 | $204 \cdot 9$ | 329.8 | 27 | -2419 | -3493 |
| 9 | $143 \cdot 7$ | $\underline{21} 3$ | 28 | - 1696 | -2799 |
| 10 | $100 \cdot 77$ | 162.27 | 29 | - 1190 | - 1015 |
| 11 | $70 \cdot 67$ | $113 \cdot 73$ | 30 | -0834 | - 1342 |
| 12 | $49 \cdot 56$ | $79 \cdot 76$ | 31 | -0585 | -0941 |
| 13 | $3 \pm .75$ | $5.5 \cdot 92$ | 32 | -0410 | - 1060 |
| 14 | $24 \cdot 37$ | $39 \cdot 92$ | 33 | -0248 | 0.463 |
| 15 | $17 \cdot 09$ | $27 \cdot 5$ | 34 | -0202 | 0325 |
| 16 | $11 \cdot 987$ | $19 \cdot 29$ | 35 | -0142 | - 0228 |
| 17 | ¢-406 | 13.53 | 36 | -0009 | - 0160 |
| 19 | $5 \cdot 895$ | $9 \cdot 487$ | 37 | - 0070 | -0112 |
| 19 | t. 134 | 6.1533 | 38 | - 0049 | -0079 |

TABLE II. FACTORS (F) UNIFORM ISOSTATIC COMPENSATION CONSIDERED.

| Ring | Finctor | Ring | Factor |
| :---: | :---: | :---: | :---: |
| 25 | $0 \cdot 995$ | 12 | $0 \cdot 493$ |
| 24 | 0.9092 | 11 | 0.358 |
| 23 | $0 \cdot 988$ | 10 | 0.234 |
| 22 | 0.983 | 9 | 0-139 |
| 21 | 0.976 | S | 0.077 |
| 20 | 0.96.5 | 7 | $0 \cdot 040$ |
| 19 | $0 \cdot 951$ | 6 | $0 \cdot 020$ |
| 18 | $0 \cdot 930$ | 5 | $0 \cdot 010$ |
| 17 | $0 \cdot 900$ | 4 | 0.005 |
| 16 | $0 \cdot 859$ | 3 | $0 \cdot 003$ |
| 1.5 | $0 \cdot 801$ | 2 | $0 \cdot 001$ |
| 14 | 0.721 | 1 | $0 \cdot 001$ |
| 13 | $0 \cdot 615$ |  |  |

PABLE III. COMPUTATION FOR LATITUDE STATION KALIANPOR.
Latitude Station No. 42.-Kalianpur, Latifude 249 7' and Height above M. S. L. 1765 feet.

|  | No. of Sector |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Hor. Sum |  | F . | F$\times$¢or.HorSum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\text { Roman }+\quad \text { Italic - }$ |  |  |  |  |  |  |  | Roman - ${ }^{\text {North }}$ Italic + |  |  |  |  |  |  |  |  |  |  |  |
| 会 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 2 | 3 | 4 | 5 | ${ }^{6}$ | 7 | 8 | 0 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |  |  |  |  |
| 30 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 28 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 27 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 25 |  |  |  |  |  |  |  | 17 | . 17 |  |  |  |  |  |  |  |  |  |  |  |
| 24 |  |  |  |  |  |  |  | -17 | $\cdot 17$ |  |  |  |  |  |  |  | 0.10 |  | -092 |  |
| 23 |  |  |  |  |  |  |  | -17 | - 17 |  |  |  |  |  |  |  | $0 \cdot 00$ |  | -188 |  |
| 22 |  |  |  |  |  |  |  | 17 | $\cdot 12$ |  |  |  |  |  |  |  | 0.00 |  | -983 |  |
| $\because 1$ | - 17 | - 17 | $\cdot 17$ | $\cdot 17$ | 10 | 16 | $\cdot 17$ | - 17 | $\cdot 17$ | 17 | 17 | $\cdot 17$ | -17 | 17 | $\cdot 17$ | $\cdot 17$ | -0.02 | - 0.02 | -976 | -0.02 |
| 20 | - 17 | - 17 | $\cdot 17$ | -17 | -10, | -16 | -181 | - 17 | $\cdot 17$ | $\cdot 17$ | 17 | $\cdot 17$ | -17 | -17 | $\cdot 16$ | $\cdot 17$ | -0.022 | - $0 \cdot 0+$ | -965 | -0.02 |
| 19 | - $1 c_{i}$ | -16 | -17 | $\cdot 17$ | -17 | $\cdot 17$ | $\cdot 17$ | $\cdot 17$ | -17 | 17 | 17 | $\cdot 17$ | -17 | $\cdot 17$ | $\cdot 17$ | $\cdot 11$ | -0.01 | - $0 \cdot 05$ | - 9 a | -0.01 |
| 18 | - 15 | -15 | - 17 | -16 | $\cdot 17$ | -17 | $\cdot 17$ | $\cdot 17$ | $\cdot 17$ | 17 | 17 | -17 | -17 | - 16 | $\cdot 15$ | $\cdot 15$ | $0 \cdot 00$ | - 0.05 | -130 | 0.00 |
| 17 | . 15 | - 16 | - 16 | $\cdot 17$ | $\cdot 17$ | -16 | -17 | $\cdot 17$ | $\cdot 17$ | 17 | $\cdot 17$ | -17 | -17 | -16 | 15 | 14 | +0.01 | - 0.04 | - 100 | $+0.01$ |
| 16 | -15 | - 16 | -17 | $\cdot 17$ | $\cdot 17$ | - 17 | $\cdot 16$ | $\cdot 17$ | - 17 | 17 | $\cdot 17$ | 17 | $\cdot 17$ | -16 | -14 | 14 | +0.03 | - 0.01 | - 850 | $+0.03$ |
| 15 | 14 | $\cdot 15$ | -16 | $\cdot 17$ | - 1 ; | -16 | $\cdot 17$ | $\cdot 17$ | $\cdot 17$ | -16 | $\cdot 17$ | $\cdot 17$ | $\cdot 16$ | - 16 | - 16 | $1+$ | -0.01 | - 0.02 | - Sol | -0.01 |
| 14 | 13 | $\cdot 14$ | -14 | -14 | $\cdot 15$ | -16 | $\cdot 17$ | . 17 | - 17 | $\cdot 17$ | -1i | $\cdot 17$ | $\cdot 16$ | - 16 | -10 | 14 | $-19 \cdot 108$ | - $0 \cdot 11$ | -721 | -0.06 |
| 13 | -15 | $\cdot 1: 3$ | -13 | -14 | $\cdot 1$. | - 17 | $\cdot 17$ | -13 | - 16 | - 17 | -1ii | $\cdot 17$ | $\cdot 16$ | $\cdot 1 \pm$ | -15 | -13 | -0.00 | - $0 \cdot 10$ | -918 | -0.08 |
| 12 | - 16 | -16 | -14 | - 16 | - 16 | - 16 | - 16 | -15 | - 15 | - 17 | -17 | -15 | - 16 | -15 | -14 | 13 | + 11.03 | - $0 \cdot 13$ | - 4.93 | $+0 \cdot 01$ |
| 11 | -19 | -10 | -18 | - 19 | $\cdot 17$ | - 17 | . 15 | -1.1 | - 14 | -13 | - 11. | -15 | -15 | - 15 | -13 | 14 | + 0.22 | + $0 \cdot 0$. | . 328 | $+0 \cdot 08$ |
| 10 | $\cdot 17$ | - 14 | $\cdot 13$ | -12 | -15 | -16 | -10. | -15 | -11 | -12 | -13 | -13 | -10 | - 09 | -09 | -12 | +0. 29 | + 0.38 |  | +0.07 |
|  | -16 | -17 | 24 | ${ }^{2} 0^{\circ}$ | - 1. | -09 | -15 | -1i | $\cdot 11$ | -090 | -11 | -11 | -07 | $\cdot 07$ | -08 | -11 | $+0.57$ | + 0.35 | -139 | $+0 \cdot 08$ |
| 8 | - 14 | - 19 | -19 | -20 | - 20 | -14 | -10 | - 16 | - 12 | - 0.9 | $\cdot 09$ | - 118 | -05 | - 0 | - 05 | -06 | $+0 \cdot 75$ | + $1 \cdot 70$ | - 077 | + $0 \cdot 00$ |
| 7 | -19 | - 02 | -09 | -12 | $\cdot 14$ | -13 | -09 | - 04 | -161 | -13 | -14 | ${ }^{0} 1$ | - 06 | - 05 | $\cdot 04$ | - 01 | +0.23 | + 1.93 | - 040 | $+0.01$ |
| 6 | -15 | $\cdot 14$ | -09 | -10 | - 12 | - 15 | -18 | . 01 | -08 | - 09 | . 18 | - 07 | - 08 | $\cdot 11$ | $\cdot 11$ | - 02 | +0.31 | + $2 \cdot 24$ | - 020 | $+0.01$ |
| 5 | -18i | $\cdot 17$ | - 09 | - 19 | -14 | - 18 | - 08 | - 011 | - 04. | $\cdot \mathrm{O}$ | - 07 | - 37 | $1 \cdot 35$ | $1 \cdot 55$ | 1.55 | - 10 | -4.11 | - 1.87 | - 010 | -0.04 |
| 4 | -2 2 | $\cdot 37$ | -49 | -15 | . 22 | - 03 | -4:3 | . 76 | $\cdot 17$ | -23 | $\cdot 40$ | 1.25 | 1.60 | $1 \cdot 50$ | $1 \cdot 50$ | -60 | $-9.96$ | -1093 | - 005 | -0.0.) |
| 8 | $\cdot 31$ | - 61 | -67 | - 00 | - 12 | - 4.3 | - 90 | $\cdot 49$ | - 20 | -45 | - 50 | -60 | - 50 | $1 \cdot 00$ | $1 \cdot 50$ | - 80 | -8.98 | -19.91 |  | -0.03 |
| 2 | . 10 | - 61 | . 90 | - 86 | . 5.5 | -67 | - 86 | -4i) | -18 | -00 | . $0+$ | - 0 | . 05 | . 20 | -10 | $\cdot 47$ | $-6 \cdot 44$ | $-26 \cdot 35$ | - 001 | -0.01 |
|  | . 01 | $\cdot 49$ | -98 | . 92 | . 61 | - 80 |  |  | - 09 | -20 | . 05 | -03 | -06 | - 30 | - 25 | - | $-6 \cdot 02$ | - $32 \cdot 37$ | -001 | -0.01 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $+0.07$ |

TABLE IV. COMPU'IATION FOR LONGITDDE STATION KALIANPUR.
Longitude Station No. 42.-Kalianpur, Latitude $24^{\circ} 7^{\prime}$, Longitude $77^{\circ} 42^{\prime}$ and Height above M. S. L. 1765 feet.


## DEFLECTIONS AT LATITUDE STATION IN THE MERIDIAN.

REGION No. 1.-HIMALAYA MOUNTAINS.

| 1 | 2 | 21. | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Name | Height | Topographical Deflection | 'I'opographi- <br> cal Deflection Compensuted $=C$ | $G$ |  | Residunl Col. 6-Col. 4 |
|  |  |  |  |  | Everest's <br> spheroid | Hersel-Clarke Spheroid |  |
|  |  | feet | " | " | * | " | " |
| 18 | Dehra Dún | 2289 | - 86 | - 18 | - 37 | - 31 | $-13$ |
| 68 | Mussoorie | 6937 | - 86 | $-17$ | - 37 | $-30$ | $-13$ |
| 133 | Birond ... | 6967 | - 74 | - 14 | - 44 | - 38 | - 24 |
| 181 | Kurseong | $44 \div 8$ | $-103$ | - 23 | - 51 | $-46$ | - 23 |
| 67 | Murree ... | 7253 | $-45$ | $-10$ | - 20 | - 12 | - 2 |
| 183 | Lambatach | 10474 | $-71$ | $-9$ | -34 | - 27 | $-18$ |
|  |  |  |  |  |  | Mean | $-16$ |

DEFLECTIONS AT LATITUDE S'IATIONS IN THE MERIDIAN.
REGION No. 2, PLAINS at THE FOOE OF THE HIMALAYA.

| 1 | 2 | 2 a | 3 | 4 | 5 | 13 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Topoernphi- | A | - ${ }^{\text {i }}$ |  |
| No. | Name | Heiglit | cal Dellection | $\begin{gathered} \text { Compernsuled } \\ =C \end{gathered}$ | Everest's Spheroid | Bessel-Clurke splieroid | Kesidual Col. ©-Col. 4 |
|  |  | feet | " | " | " | " | " |
| 41 | Kaliana | S28 | - 58 | - 3 | - 7 | - 1 | + 2 |
| 224 | Niliguri | 401 | - 84 | - 11 | - 22 | - 18 | - 7 |
| 166 | Ialpaiguri | 280 | - 77 | - 8 | - 6 | - 1 | + 7 |
| $\cdots$ | P'athardi | 320 | - 64 | - 3 | - 19 | - 14 | - 11 |
|  |  |  |  |  |  | Mear | - 2 |

DEFLECTIONS AT LATITUDE S'TATIONS IN THE MERIDIAN.
region No. 3.-NORTH-EAST INDIA.

| 1 | 2 |  | 2 a | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Name |  | Height | Topographicral Dellection | Topogruphicnl Jeflection Compenshted $=C$ | A-G |  | $\begin{array}{\|c\|} \text { Residuul } \\ \text { Col. } 6 \text {-Col. } 4 \end{array}$ |
| No. |  |  | Everest's Spheroid |  |  | Bensel-Clarke Spleroid |  |
|  |  |  |  | feet | " | " | " | " | " |
| 13 | Calcutta ... | $\ldots$ | 18 | - 51 | 0 | $+1$ | + 4 | $\begin{array}{r} \\ +\quad 4 \\ \hline\end{array}$ |
| 14 | Chendwar | $\ldots$ | 2817 | - 43 | 0 | $+3$ | + 7 | + 7 |
| 143 | Chanduria | ... | 160 | - 63 | - 2 | + 4 | + 9 | + 11 |
| 37 | Hurilaong | ... | 1378 | - 37 | + 2 | + 11 | + 15 | + 13 |
| 43 | Kanakhera | ... | 416 | - 39 |  | + 5 | + 10 | + 10 |
| 32 | Gurwani ... | ... | 2083 | $-35$ | + 1 | + 3 | + 7 | + 6 |
| 72 | Nimkar ... | ... | 486 | - 44 | - 1 | 0 | + 5 | + 6 |
| 188 | Madhupur | .. | 92 | - 47 | - 1 | + 4 | + 8 | + 9 |
| 130 | Bansgopal | ... | 677 | - 44 | - 1 | - 5 | + 1 | + 2 |
|  | Sora | ... | 400 | - 44 | 0 |  | + 11 | + 11 |
|  |  |  |  |  |  |  | Mean | + 8 |

## DEFLECTIONS AT LATITUDE STATIONS IN THE MERIDIAN.

REGION No. 4-CENTRAL INDIA.

| 1 |  |  | 2: | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Name |  | Height | 'Topographical Deflection | Topographicol Dellection Compenented $=C$ | Everest's Bes eel. Carke <br> Spheroid <br> Spleroid  |  | $\begin{gathered} \text { Hesidunl } \\ \text { Col. G-Col. } \end{gathered}$ |
| 44 | Kankra |  | feet 1652 | - 35 | - 1 | - | + 4 | + |
| 60 | Keari | $\ldots$ | 1487 | - 31 | $+\quad 1$ | 1 $+\quad 6$ | + 10 | + 9 |
| 93 | Kewat | ... | 1542 | - 24 | 0 | + 1 | + 6 | + 6 |
| 222 | Snugor | $\ldots$ | 20.33 | - 29 | $+\quad 1$ | $+\quad 1$ | $+\quad 4$ $+\quad$ | $+\quad 3$ $+\quad 1$ |
| 76 | Pahargarh | ... | 1641 | - 30 | + 1 | + 0 | $+\quad 4$ | +3 $+\quad 3$ |
| 149 | Daiadhari | ... | 1867 | - 31 | 0 | + 1 | + 5 | + 5 |
|  |  |  |  |  |  |  | Mean | + 5 |

## DEFLECIIONS AT LATITUDE STATIONS IN THE MERIDIAN.

REGION NO. 5.-NORTH-WES'I INDIA.

| 1 | 2 |  | 2 a | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Name |  | Height | Topngrapinical Deflection | Topographical Jeflection Compensuted $=C$ | A-G |  | Residual <br> Col. 6-Col. |
|  |  |  |  |  |  | Everest's Spheroid | Bessel-Clarke Spheroid |  |
|  |  |  | fect | " | " | " | " | " |
| 201 | Oria | .. | 4200 | - 35 | $+1$ | $-3$ | + 1 | 0 |
| 174 | Khaukharia | ... | 362 | - 37 | 0 | + 2 | + 6 | + 6 |
| 215 | Rojhra ... | ... | 518 | - 35 | - 1 | 0 | + 4 | + 5 |
| 194 | Mooltan | ... | 420 | - 36 | - 1 | - 3 | + 4 | + 5 |
| 124 | Amritsar | ... | 770 | - 45 | $-1$ | $+4$ | + 11 | + 12 |
| 101 | Tasing ... | ... | 2050 | - 83 | +1 | 0 | + 6 | + 5 |
| 120 | Alibar ... | ... | 641 | - 29 | $-1$ | - 5 | + 2 | + 3 |
| 122 | Alum Khan | ... | 67 | - 36 | -1 | - 1 | + 3 | + 4 |
| 95 | Sawaipur | $\ldots$ | 697 | - 30 | 0 | - 1 | + 6 | + 6 |
| 134 | Bitlmok | ... | 774. | - 27 | +1 | + 3 | + 8 | + 7 |
| 117 | Agra ... | ... | 550 | - 35 | 0 | - 5 | 0 | 0 |
| 45 | Karachi ... | ... | 35 | - 4.5 | - 2 | 0 | $+\quad 4$ | + 6 |
| 233 | Thob ... | $\ldots$ | 856 | - 32 | - 1 | $-3$ | + 3 | + 4 |
| 213 | Kangitgarh | ... | 900 | - 44 | - 5 | - 6 | + 2 | + 7 |
| 38 | Isampur | $\cdots$ | 874 | - 35 | - 1 | - 4 | + 3 | + 4 |
| 89 | Ramthal | ... | 901 | - 27 | +1 | 0 | + 4 | + 3 |
| 53 | Khimuana | $\cdots$ | 731 | - 33 | 0 | $-3$ | + 3 | + 3 |
| 232 | Telu | $\ldots$ | 470 | - 29 | 0 | +1 | + 7 | + 7 |
| 73 | Noh | ... | 710 | - 38 | - 1 | 0 | + 5 | +6 |
| 17 | Datairi ... | ... | 767 | - 40 | $-1$ | - 6 | 0 | + 1 |
| 106 | Usira . | ... | 810 | $-33$ | 0 | - 6 | - 1 | - 1 |
|  |  |  |  |  |  |  | Mean | + 4 |

## DeFlections at Latitude stations in The meridian.

REGION No. 7.-W ESTERN INDIA.

deflections at latitude stations in the meridian.
REGION No. 8.-EAS'TIRS INDTA.

| 1 | 2 |  | $3_{1}$ | 3 | 4 | 5 | $G$ | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Name |  | Heigh, | Topographical Deflection | Topographienl Deflection Compensated $=C$ | $A-\mathrm{a}$ |  | Residual Col. 6-Col, 4 |
|  |  |  | Everest's Spheroid |  |  | Besrel-Clarke Spheroid |  |
|  |  |  |  | feet | " | " | " | " | " |
| 135 | Bolarum | ... | 1971 | - 38 | - 1 | -6 | - | $-4$ |
| 239 | Waltair | $\ldots$ | 200 | - 62 | - 6 | $-9$ | $-8$ | - 2 |
| 184. | Lingmara | ... | 1400 | - 38 | $-1$ | $-8$ | - 5 | -4 |
| 148 | Culitack | ... | 133 | - 55 | - 3 | - 9 | $-7$ | $-4$ |
| 197 | Nahar'mau | ... | 1940 | - 31 | 0 | $-5$ | - 9 | - 2 |
| 192 | Mal | ... | 483 | - 58 | - 6 | -10 | $-9$ | -3 |
| 203 | Pathindi | ... | 879 | - 42 | - 1 | $-3$ | 0 | +1 |
| 202 | Parampudi | ... | 684 | $-49$ | $-2$ | $-6$ | $-5$ | -3 |
| 1.5 | Danapa | ... | 150 | - 44 | - 1 | 0 | 0 | +11 |
| 198 | Nialamari | ... | 1144 | - 42 | $-1$ | $-8$ | $-7$ | - 6 |
| 160 | Dhulipalla | $\ldots$ | 245 | $-44$ | $-1$ | -3 | -3 | - 2 |
| 200 | Ongole | ... | 250 | $-45$ | -1 | - 4 | $-4$ | -3 |
| 154 | Darutippa |  | 195 | $-45$ | $-1$ | -3 | -3 | $-2$ |
| 218 | Sanjib | ... | $214 \%$ | - 66 | -9 | $-6$ | -6 | + 3 |
| 214 | Rawal | $\ldots$ | 874 | - 56 | - 3 | $-4$ | - 3 | 0 |
| $\underline{236}$ | Vinakonda |  | 1664 | - 12 | -1 | $-7$ | $-6$ | -5 |
| 238 | Vizagapatas | ... | 181 | $-61$ | $-5$ | $-6$ | - 5 | 0 |
|  |  |  |  |  |  |  | Mean | $-2$ |

DRILLECTIONS A' LATITUDE STATIONS IN THE MERIDIAN. REGION No. 9-SOUTHIERN INDIA.

| 1 | 2 |  | $2 \times$ | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Name |  | Height | 'Topographical Deflection | 'Topographicnl Deflection Compensated $=C$ | A-G |  | $\begin{gathered} \text { Residunl } \\ \text { Col, 6-Col. } 4 \end{gathered}$ |
|  |  |  | Everest's Spheroid |  |  | Besscl-Clarke Spleroid |  |
|  |  |  |  | fect <br> 347 <br> 18 |  |  |  |  |  |
| 58 | Kutiparai | $\ldots$ |  | - 50 | -4 | $+2$ | $+3$ | $+7$ |
| 65 | Mingalore | ... | 186 | - 42 | - 1 | + 3 | + 2 | + 3 |
| 8 | Bangalore | ... | 3126 | - 37 | - 1 | $-5$ | -5 | - 4 |
| 230 | St. 'Thomas' Mt. | ... | 250 | - 41 | - 1 | +6 | + 5 | $+6$ |
| 85 | Punna |  | 48 | - 54 | - 4 | + 2 | $-1$ | + 3 |
| 103 | Teruvendipuram | ... | $\ldots$ | - 40 | - 1 | +6 | $+4$ | $+5$ |
| 111 | Yettimalai | $\ldots$ | 617 | - 43 | - 1 | + 2 | 0 | + 1 |
| 180 | Kistama | ... | 458 | - 42 | 0 | - 2 | -3 | -3 |
| 35 | Honnavalli | ... | 2775 | - 37 | - 1 | - 2 | - 2 | -1 |
| 69 | Namthabad | ... | 1169 | - 35 | -1 | -1 | - 1 | 0 |
| 55 | Koramur | $\ldots$ | 2527 | - 36 | + 1 | -5 | - 6 | $-7$ |
| 12 | Rommasandra | $\ldots$ | 2005 | - 31 | $+2$ | + ${ }^{\text {c }}$ | + ${ }^{\text {g }}$ | + 4 |
| 103 | Gudali |  | 292 | - 42 | 0 | +1 | 0 | 0 |
| 30 | ITonnur |  | 1679 | - 32 | +1 | $+3$ | + 3 | + 2 |
|  |  |  |  |  |  |  | Mean | + 1 |

DEFLECTIONS AT LONGITUDE STATIONS IN PRIME VERTICAL.

| 1 | 2 |  | 3 | 4 | 5 | ${ }_{6}$ | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Refcrence Letter | Name |  | Ierght | Topogruphical Deflection | Topographi- <br> cal Deflertion <br> Compensated $=C$ | ( $\mathrm{A}^{-}$ | i) $\cos \lambda$ |  |
|  |  |  |  |  |  | Ererest's Spheroid | Hessrl-Charke Spheroid | Residual <br> Col. 7-Col. 5 |
| k |  |  | feet550 | - 17 | " | " | " | " |
|  | Agra |  |  |  | 0$-\quad 1$ | ... | ... | $\ldots$ |
|  |  |  | 770$\mathbf{3 1 2 6}$ | - 30 |  | $-\cdots 3$ |  |  |
|  |  |  |  | $\begin{array}{r}0 \\ -\quad 3 \\ \hline\end{array}$ | - 1 |  | $-\cdots 3$ | - ${ }^{\cdots}$ |
|  | Bellary |  |  |  | 0 | ... | - $\cdots$ | -. |
| L |  |  | 1971 | - 2 | 0 | - 3 | $-3$ | - 3 |
| E | BolarumCalcutta |  | 18 | - 7 | 0 | $-10$ | - 4 | - 4 |
| O | Colaba |  | 75 | - 29 | - 4 | + 7 | + 4 | + 8 |
| P | Deesia ... |  | 443 | - 20 | - 2 | - 3 | - 6 | - 4 |
| C | Dehra Itún ... |  | $2 \div 40$ | - 87 | $-13$ | - 22 | - 22 | - 9 |
| $G$ | Jalpaiguri |  | 280 | - 8 | 0 | - 18 | - 13 | - 13 |
| N | Jubbulpore |  | 1306 | - 9 | - 1 | - 9 | - 8 | - 7 |
| A | Kalianpur |  | 1765 | - 11 | + 1 | - $\quad$. |  | - $\quad$. |
| B | Karachi |  | 35 | - 16 | - 1 |  | $-\quad$ $-\quad 6$ |  |
| S | Maelras |  | 85186 | + 31 | + 6 | -7 | $-\quad 6$ $-\quad 5$ | - 5 -11 |
| Q | Mangalore |  |  | - 29 | - 3 | + 2 | + 1 | - 11 $+\quad 4$ |
|  | MultanPerhawar | . | 420 | - 11 | + 1 |  | ... | $+\ldots$ |
|  |  | $\ldots$ | 11848200 | r$-\quad 9$$+\quad 17$ | +1$+\quad 1$$+\quad 6$ | $\cdots$ |  | $\cdots$ |
| M | Punne <br> Waltair | $\ldots$ |  |  |  | - ${ }^{-3}$ | $\cdots{ }_{0}$ | - $\quad \begin{gathered}\text { c }\end{gathered}$ |
|  |  |  |  |  |  |  |  |  |




[^0]:    * Isostnay may be described ns follows:-"The excess of material represented by that portion of the continent which "is nbove sen-lavei, will be compensuted for by $n$ defect of clensity in the underlying material the continents will be "flonted, so to spenk, because they are composed of rolatively light material; and, similarly, the floor of the oceun will be "depressed, becmase it is romposed of unosully denso materinal. This particular condition of approsimate equlibrium, has "been giren the name teostasy."
    + For a delniled necount, the reader is referred to " The Figare of the Enrth and Isostasy from mensurements in tho Unitel States" by John F. Haytord, Washington 1009.

[^1]:    * For the ruluea of 8 and $\Delta$ see "The Solar Parallux and ita Related conatan*s" by W. Harhneas, Waghington 1891.
    + Thie quantits is derised as follows:- The ratio of the density of sea witer to the apprage deneity of the crust, has
     of the crunt, lie $(1 \cdot(600-0 \cdot 385)=0 \cdot 615$ multiplied by the depth below the present surfuce.

[^2]:    * For Reasel-Clarke spheroid, for zern of rerticality in Indin, and for most prohnhle deflection at Kalinepur see Phil. Trananctions. Rogul suciety A. Vol. 205, 1905 and Professional Paper No. 12 Surrey of India, On the Orig:" of the Mimalayn Dountains, by Colonel is. G. Burrard, C.S I., R.E., F K.S., 1912.

